
RabbitMQ: SimplePerformanceTests https://dev.rabbitmq.com/wiki/SimplePerformanceTests/print

1 of 3 16/2/08 15:24

SimplePerformanceTests
Table of Contents

1 What ConsumerMain/ProducerMain Does

2 What MulticastMain Does

3 Command Line for ConsumerMain

4 Command Line for ProducerMain

5 Command Line for MulticastMain

1 What ConsumerMain/ProducerMain Does
ProducerMain injects a finite number of messages at a certain rate into a queue named "test
queue". ConsumerMain retrieves messages from queue "test queue". Both programs report
how fast they were able to complete their tasks.

For ConsumerMain and ProducerMain, arguments can be omitted from the right, and sensible
defaults will be used. Since simple positional argument decoding is used, there's no way of
providing a value for argument 4, say, while omitting any of arguments 1 through 3.

2 What MulticastMain Does
MulticastMain producer-parts send messages to the named exchange. MulticastMain
consumer-parts create anonymous queues and bind them to the named exchange. This permits
experimentation with the performance of direct, fanout and topic exchanges, in configurations
where each consumer is to receive its own copy of the messages sent. Contrast this with
ProducerMain/ConsumerMain, in which each consumer reads from a shared queue.

Programs Deliveries per 1 publication Copy style

MulticastMain N fanout

ProducerMain / ConsumerMain 1 round-robin

3 Command Line for ConsumerMain

bash runjava.sh com.rabbitmq.examples.ConsumerMain \
 $brokerhostname \
 $brokerportnumber \
 $writestats

where

$brokerhostname: defaults to "localhost"

$brokerportnumber: defaults to 5672

$writestats: defaults to "true"

"true", to cause this instance of ConsumerMain to capture latency
statistics, and write them out in a gnuplottable form, or

"false", to ignore latency information for this ConsumerMain instance.

RabbitMQ: SimplePerformanceTests https://dev.rabbitmq.com/wiki/SimplePerformanceTests/print

2 of 3 16/2/08 15:24

4 Command Line for ProducerMain

bash runjava.sh com.rabbitmq.examples.ProducerMain \
 $brokerhostname \
 $brokerportnumber \
 $ratelimit \
 $messagecount \
 $sendcompletion \
 $commitevery \
 $sendlatencyinfo \

where

$brokerhostname: defaults to "localhost"

$brokerportnumber: defaults to 5672

$ratelimit: defaults to 100000 messages-per-second (essentially "unlimited").

$messagecount: defaults to 60000 messages sent in total.

$sendcompletion: defaults to "false".

"true" for sending an extra message after the main batch to cause the
consumers to exit.

"false" to omit the extra message.

$commitevery: defaults to -1.

set to -1 to use transient-mode, without transactions.

set to 0 to use persistent-mode, without transactions.

set to >0 (e.g. 1 or 100, for instance) to use persistent-mode with
fully synchronous transaction commits every N messages.

$sendlatencyinfo: defaults to true.

5 Command Line for MulticastMain
MulticastMain differs from the other two, in both what it does and how it is invoked. All
arguments are provided using command-line switches, which can be in any order. All switches
are optional.

bash runjava.sh com.rabbitmq.examples.MulticastMain \
 -h hostName \
 -p portNumber \
 -t exchangeType \
 -e exchangeName \
 -i samplingInterval \
 -r rateLimit \
 -x producerCount \
 -y consumerCount \
 -m producerTxSize \
 -n consumerTxSize \
 -a \
 -s minMsgSize \
 -d maxRedirects \

RabbitMQ: SimplePerformanceTests https://dev.rabbitmq.com/wiki/SimplePerformanceTests/print

3 of 3 16/2/08 15:24

 -z timeLimit \
 -f [mandatory|immediate|persistent]

The hostName and portNumber default to "localhost" and 5672.

The -a option is a simple switch: if it is present, AMQP auto-acknowledgements are used; if it
is absent, explicit acknowledgement messages are sent to the broker.

The -f option can be specified multiple times. The argument to -f adds a single flag to the set
of flags used for each Basic.Publish operation:

"mandatory" is the mandatory flag on Basic.Publish

"immediate" is the immediate flag on Basic.Publish

"persistent" sets the DeliveryMode to 2

The exchangeType is used when declaring any exchanges used by the program, and defaults to
"direct".

The exchangeName defaults to the exchangeType (ie. usually "direct", unless overridden), if
an exchangeName is not supplied. The producer part of the application both declares and
publishes to the named exchange. The consumer part of the application both declares and
binds a queue to the named exchange.

The samplingInterval specifies how often, in seconds, statistics are to be dumped to the
console and reset. The default is every 1 second.

The rateLimit is the number of messages per second that each producer part should publish,
and defaults to 0, meaning unlimited (i.e. as fast as it can).

The producerCount and consumerCount control how many separate threads (and thus separate
TCP socket connections to the broker) should be started as producers and as consumers,
respectively. Both values default to 1.

The producerTxSize controls the number of publishes each producer sends before calling
txCommit(). If the value is 0, TX-transaction mode is not used. The consumerTxSize,
similarly, controls transaction batching for consumers in the same way, mutatis mutandis.
Both controls default to 0, i.e. not using TX-transaction mode.

minMsgSize can be used to force the payload part of each published message to be longer than
the application's minimum of 12 bytes. (The 12 bytes are used to carry a sequence number
and a nanosecond tick counter, used for computing latency.) It defaults to 0, i.e. the
messages sent will be as small as possible.

maxRedirects controls the number of redirects accepted during connection establishment. It
defaults to 0, meaning that the broker is not permitted to redirect the client to a different
address. This can be used when connecting to a broker cluster, to distribute connections
between the different listening sockets in the cluster.

timeLimit controls how long this instance of MulticastMain should run for, in seconds. The
default value of 0 means that it should continue running indefinitely.

(last modified Sat, 16 Feb 2008 15:23:52 GMT by tonyg@lshift.net)

